1M/PHY-100 (Th) Syllabus-2023

2024

(December)

FYUP: 1st Semester Examination

MAJOR

PHYSICS

(Mathematical Physics, Properties of Matter and Waves)

PHY-100

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any eight questions

- 1. (a) The position vector of a particle is $\vec{r} = 4t^2\hat{i} + 2t\hat{j} + 3t^2\hat{k}$. Find the (i) displacement from t = 1 to t = 2, (ii) velocity and acceleration at t = 2. 2+2=4
 - (b) Show that for a system of particles, the net external force acting on it is equal to the product of the mass of the system and the acceleration of the centre of mass.

- **2.** (a) Show that $\nabla \vec{r}^n = nr^{n-2}\vec{r}$, where $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$.
 - (b) What is meant by curl of a vector? State Stokes' theorem. 1+1=2
 - (c) Write down the unit vectors in cylindrical coordinates and show that they are perpendicular to each other. 3
- 3. (a) Same torque is applied to a disc and a flywheel having the same mass and same radius. Explain which will rotate with a larger angular velocity.
 - (b) A horizontal beam of negligible weight is clamped at one end and loaded with a weight W at free end. Obtain the expression for the depression of the free end.
- 4. (a) What are inertial and non-inertial frames? Give one example of each. 2
 - (b) What are fictitious forces?

4

(Continued)

(c) Taking the earth to be a rotating frame, discuss the effect of centrifugal force on the value of g. Show that the effect is maximum at the equator and minimum at the pole.

5. Solve the following differential equations :

3+4=7

3

- (i) $\frac{dy}{dt} + y\cos t = 0$ with the initial condition $y(0) = \frac{1}{2}$
- (ii) $\frac{d^2y}{dx^2} 2\frac{dy}{dx} 3y = 0$ using the conditions y(0) = 0, y'(0) = 1
- 6. (a) Show that in stretching a wire work done = $\frac{1}{2}$ × stress × strain
 - (b) The Young's modulus of a material is $7 \times 10^{11} \text{ dynes/cm}^2$ and rigidity modulus is $3 \times 10^{11} \text{ dynes/cm}^2$. Calculate the bulk modulus and the Poisson's ratio.

7. (a) Explain the terms (i) surface tension and (ii) surface energy. Derive the relation between surface tension and surface energy.

1+1+2=4

- (b) Show how Bernoulli's theorem is applied to measure the rate of discharge of water.
- 8. (a) Distinguish between streamline and turbulent flows of a liquid and explain the significance of Reynolds number.

1+1+2=4

3

D25/**822**

(Turn Over)

	(b)	Obtain the expression for the terminal velocity of a sphere falling through the viscous medium of density σ . Given that ρ and a are respectively the density and radius of the sphere.	3
9.	(a)	What is SHM? Show that the sum of KE and PE of a particle executing SHM is constant.	3=4
	(b)	A particle executes SHM according to the equation $x = 5\sin(\pi t + \frac{\pi}{4})$. Find the (i) displacement, (ii) velocity and (iii) acceleration at $t = 0.5$ sec.	3
10.	(a)	Two vibrations at right angles to each other, are described by the equations $x = 3\cos 4\pi t$ and $y = 3\cos 8\pi t$. Write down their amplitudes and frequencies, and construct the Lissajous figure of the combined motion.	3
	(b)	What is Q-value of a damped oscillation? Explain its significance.	2
	(c)	Discuss the effect of damping on the frequency of oscillation.	2
11.		the condition for resonance.	7

12.	(a)	What is progressive wave? Give example.	=2
	(b)	Deduce the classical differential wave equation of a plane progressive wave.	3
	(c)	Explain the terms (i) phase velocity and	2